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Smart surfaces with reversibly switchable wettability have
aroused great interest because of their myriad applications as
biosensors, microfluidic devices, intelligent membranes, and $o on.
This reversible switching can be achieved through an externally
applied stimulus such as light irradiatiérelectrical potentiat,
temperaturé, solvent? and pH® Among these external stimuli-
responsive materials, azobenzene and its derivatives are known to &% _
exhibit large (_:h.ang_es m. b.Oth geometry and d|p.0|e momgnts as aFigure 1. (a) SEM images of a substrate formed after nine deposition
result of UV/visible irradiation because of reversible photoisomer- ¢y cjes: (b) magnified image; (c) cross-sectional view. The dotted arrow
ization between the cis and trans conformations, which means thatindicates the film thickness, which is approximately 250 nm.
the wettability of azobenzene-modified surfaces can be altered with
UVlvisible irradiation. However, most azobenzene-modified sur-
faces prepared on flat substrates exhibit only minor changes in the
water contact angle (CA), that is, less tharf,18s a result of UV
light illumination” No organic surface that can be switched between
superhydrophobicity and superhydrophilicity with UV irradiation
has yet been reported.

Herein, we report the facile fabrication of a photoswitchable
nanoporous multilayer film with wettability that can be reversibly
switched between superhydrophobicity and superhydrophilicity with
UV/visible irradiation. To produce this surface, we used a method
that combines facile surface roughness control with an electrostatic
self-assembly procebssand photoresponsive molecular switching
of fluorinated azobenzene molecules (Scheme 1). Furthermore, we
demonstrate that this approach can be used to fabricate substrates
with erasable and rewritable patterns of extreme wetting properties
as a result of selective UV irradiation. nanopores with increasing PAH/Si®ilayers. Figure 1b shows a

To fabricate porous organignorganic hybrid multilayer films highly magnified image of the (PAH/SI film, with its multilevel
with hierarchical structures on negatively charged Si wafers, we structures created hierarchically on the substrate. The cross-sectional
used the layer-by-layer (LBL) technique with the polyelectrolyte, view shows that the inner structure of the rough substrate contains
poly(allylamine hydrochloride) (PAHM,, ~ 70 000), and Si@ many pores because of its complex network of silica nanoparticles
nanoparticles d ~ 11 nm) as the polycation and polyanion, (Figure 1c).
respectively. After completion of deposition, these films were  The reversible wettability of the fluorinated azobenzene-modified
modified with 3-(aminopropyl)triethoxysilane, which provides the substrates was studied by measuring the CA. On a flat substrate,
binding sites for introducing the photoswitchable moieties, and then after exposure to UV light (365 nm) for 10 min, the CA change
treated with photoswitchable agent, 7-[(trifluoromethoxyphenyl- was found to be about % 1°, that is, it was decreased from %6
azo)phenoxy]pentanoic acid (CF3AZ0), which was synthesized as 1° to 71+ 1°. Further, when the surface was irradiated with visible
previously reported (see Supporting Informatién). light (440 nm) for a certain time, the CA was restored to its initial

In our method, the surface roughness and nanoporosity of the state, as shown in Figure 2a. This phenomenon is due to the change
films gradually intensify with increases in the number of PAH/ in the dipole moment of the azobenzene molecules upon trans to
SiO, bilayers (see Supporting Information). Figure la shows a cis photoisomerization via UV/vis irradiation (Scheme 1h).the
scanning electron microscopy (SEM) image of an azobenzene-trans state, the azobenzene molecules on the substrate self-assemble
modified (SiQ/PAH)y polyelectrolyte multilayer. The use of nine  in a monolayer array as a result of the van der Waals forces between
deposition cycles was found to be sufficient to significantly increase the alkyl chains and the-stacking forces between the aromatic
the nanoporosity and surface roughness, that is, a substrate witfrings, so in this state the substrate has a small dipole moment, a
enhanced surface roughness. By increasing bilayers from three tolow surface energy, and a higher CA because of the fluorine atoms
nine, the peakpeak height (height difference between highest and of the chain tails. The trans-to-cis transformation of azobenzene
lowest pixel) increased from 106 14 to 241+ 15 nm from atomic induced by UV light irradiation leads to a large increase in the
force microscopy (AFM) images. Moreover, from three bilayers, dipole moment of these molecules, and the chain ordering in the
nanopores of several tens nm were formed, and porous domainsazobenzene monolayers is demoliskthus, the cis substrate has
finally create a combination of submicro- (20800 nm) and a lower CA.

Scheme 1. (a) Fabrication and (b) Reversible Photoisomerization
of a Roughness-Enhanced Photoswitchable Surface
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patterned substrate as a result of selective UV irradiation.

Figure 2. (a) The relationships between the number of deposition cycles d . b hvdrophili d th ked
and the water contact angles: water droplet profiles on the smooth substrate€XP0sed regions become superhydrophilic and the masked areas

(dotted arrows) and on the (PAH/S)@multilayer film (solid arrows) after maintain their superhydrophobic properties (Figure 3). Moreover,
UV/visible irradiation. (b) Reversible wettability transitions of a smooth  on visible light illumination, the patterns vanish; that is, the CA
substrate((l) and a (PAH/SI@) multilayer film (m). recovers to its initial state. These results indicate that by using a
. ) o photosensitive surface in combination with selective irradiation
Surprisingly, in contrast to the flat surface, the wettability of grasaple and rewritable patterned substrates with extreme wetting
the nanostructured multilayer film modified with CF3AZO was properties can easily be created.
found to change from superhydrophobic to superhydrophilic as a |5 conclusion, we have presented a facile method for the fabrica-
result of UV/vis irradiation. Figure 2a shows the relationship g of a wetting surface that is photoswitchable from superhydro-
between the CA and the number of deposition cycles. The CAs of pnopicity to superhydrophilicity, which combines layer-by-layer
CF3AZO modified multilayer films gradually increase from 26 a5sembly and the introduction of photoresponsive moieties onto
1° for a flat substrate to 9% 2° (n = 1), 127+ 3° (n = 3), 138 the top surface. The proposed method is reproducible and can be

+2°(n=5), 146+ 1° (n =7), and 152+ 3° (n = 9), wheren applied in a wide range of fields requiring external stimuli-respon-
is the number of PAH/Si@bilayers. These results clearly show  gjye surface.
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